В равнобедренном треугольнике с периметром 32 см длина отрезка, соединяющая середины боковых сторон, равна 6 см. Найдите диаметр окружности, вписанной в этот треугольник
Объяснение:
Т.к. средняя линия 6 см , то основание 12 см , по т. о средней линии.
Тогда равные боковые стороны (32-12):2=10 ( см).
d=2r , а радиус можно найти из формулы S=1/2*P*r.
Площадь треугольника можно найти по ф. Герона ,
р=32:2=16 , р-а=16-10=6, р-в=16-10=6 , р-с=16-12=4,
S=√( 16 *6*6*4)=4*6*2=48 (см²)
S=1/2*P*r , 48=1/2*32*r , r=3 см ⇒ d=6 см
Формула Герона S= √p (p−a) (p−b) (p−c) , полупериметр p= 1 ÷2 *(a+b+c).
6 и 12 см
Объяснение:
Дано: ΔАВС; ∠С=90°; ∠А=30°; АС=18 см; т.D∈AC; BD - биссектриса ∠В.
Найти СД и ДА.
∠В (ΔАВС)=180-90-30=60°; ВД - биссектриса (по условию), значит, ∠СВД=∠АВД=30°, т.е. ΔАВД - равнобедренный с равными боковыми сторонами АД=ВД. А в прямоугольном ΔДВС сторона ВД - гипотенуза, которая равна удвоенному катету СД, который лежит против угла в 30°. Имеем: 2СД=ВД=АД, 2СД=АД, т.е. сторона АС разбита на отрезки, относящиеся как 1:2. АС=18 см, значит, СД=6 см, а АД=12 см.