Уравнения диагоналей: AC (х+2)/(7+2)=(у+2)/(7+2), после преобразований получается у=х или х-у=0. BD (х+3)/(3+3)=(у-1)/(1-1). Вот что делает формальный подход. После преобразований получается: (х+3)/6=(у-1)/0. Ужас! деление на ноль! А всего лишь, нужно было внимательнее посмотреть и осмыслить значения. У точек B и D одинаковые ординаты. А это значит, что BD - горизонтальная линия, и ее уравнение у=1. Теперь нужно выяснить, какие же линии - основания, а какие - боковые стороны. Конечно, если мы начертим трапецию, то сразу видно, что AD параллельно ВС, значит что ADи ВС - основания. Но ведь нам нужно обойтись без чертежа. Значит придется составить уравнения АВ, ВС, CD и АD, и выбрать из них две с одинаковыми коэффициентами. Итак: (на всякий случай пока отправлю то, что есть, так как с минуты на минуту может прийти жена, и выгонит меня из-за компа). Продолжаю. Уравнения сторон: АВ (х+2)/(-3+2)=(у+2)/(1+2), 3х+6=-у-2, у=-3х-8; ВС (х+3)/(7+3)=(у-1)/(7-1), 6х+18=10у-10, у=0,6х+2,8; СD (DC) (х-3)/(7-3)=(у-1)/(7-1), 6х-18=4у-4, у=1,5х-3,5; AD х+2/(3+2)=(у+2)/(1+2), 3х+6=5у+10, у=0,6х-0,8. Видим, что одинаковые угловые коэффициенты (при х) у линий BC и AD. Значит это основания. Теперь главная фишка. Можно было бы тупо вычислить координаты точек на серединах сторон АВ и СD и написать уравнение линии, проходящей через эти точки. Но, поскольку средняя линия параллельна основаниям, то угловой коэффициент у нее одинаков с ними, т.е. 0,6. Так как она проходит посередине между ними, то свободный член уравнения равен среднему арифметическому свободных членов уравнений BD и АС, т.е (2,8-0,8)/2=1. Получаем уравнение средней линии у=0,6х+1.
Из точки D проведем высоту DK в треугольнике ADC, ADC равнобедренный, поэтому DK является так же и медианой. AK=KC, угол BAC=30, значит в прямоугольном треугольнике ABK катет BK=AB/2 поскольку лежит против угла 30 гр. Отсюда BK квадрат равен Ab квадрат/4 Из теоремы Пифагора также ВК квадрат=АВ квадрат-АК квадрат. То есть АВквадрат/4=АВквадрат- АК квадрат. Подставим АК=АС/2=9. Получим АВ=27. Отсюда ВК=АВ/2=13,5. В прямоугольном треугольнике ДАС ДК=КС*tg60=9корней из 3(поскольку угол ДСК=60 по условию). Теперь знаем три стороны треугольника ДКВ. КВ=13,5 КД=9 корень из3 ДВ=корень из 189. Отсюда по теореме косинусов cosДКВ=( в квадрат+с квадрат -а квадрат)/2 в с. Подставляем cos ДКВ=((9 корней из3)квадрат+(13,5)квадрат-(корень из 189))/2*(9корней из3)*13,5=0,56. Отсюда по таблицам угол ДКВ между плоскостями треугольников =56 градусов.
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.