ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение:
угол СВА=180-2*30=60
угол ВАЕ = половине ВАС, т. е. 15
угол ВЕА= 180-ЕВА-ВАЕ=180-60-15=180-75
теорема синусов для треугольника ВАЕ
ВЕ/sin(15)=АВ/sin(180-75) => АВ=ВЕsin(180-75)/sin(15)
теорема синусов для треугольника АВС
АВ/sin(30)=АС/sin(60) => АС=АВsin(60)/sin(30)
S=АВsin(30)АС/2=(ВЕsin(180-75)/sin(15))^2 *(sin(60)/sin(30)) *(1/2)=[32sqrt(3)]*(sin^2(75)/sin^2(15))=[32sqrt(3)]*(1-2sin^2(75)-1)/(1-2sin^2(15)-1))=[32sqrt(3)]*(cos(150)-1)/(cos(30)-1))=[32sqrt(3)]*(sin(90-150)-1)/(cos(30)-1))=[32sqrt(3)]*(sin(-60)-1)/(cos(30)-1))=[32sqrt(3)]*(sqrt(3)/2+1)/(1-sqrt(3)/2))=[32sqrt(3)]*(sqrt(3)+2)/(2-sqrt(3)))