См. Объяснение
Объяснение:
Задание
Из точки, которая находится на расстоянии 8 см от прямой, проведены к ней две наклонные, образующие с прямой углы 30 и 45 градусов. Найдите расстояние между основаниями наклонных, сколько решений имеет задача.
Вариант 1 - основания наклонных находятся по разные стороны от проекции точки на данную линию.
1) Длина проекции наклонной, образующей с ней угол 30°, равна:
8 · ctg 30° = 8√3 см
2) Длина проекции наклонной, образующей с ней угол 45°, равна:
8 · ctg 45° = 8 см
3) Расстояние между основаниями наклонных:
8√3 + 8 = 8 (√3 + 1) см ≈ 8 · (1,732 + 1) = 8 · 2,732 ≈ 21,86 см
Вариант 2 - основания наклонных находятся по одну сторону от проекции точки на данную линию.
1) Длина проекции наклонной, образующей с ней угол 30°, равна:
8 · ctg 30° = 8√3 см
2) Длина проекции наклонной, образующей с ней угол 45°, равна:
8 · ctg 45° = 8 см
3) Расстояние между основаниями наклонных:
8√3 - 8 = 8 (√3 - 1) см ≈ 8 · (1,732 - 1) = 8 · 0,732 ≈ 5,86 см
ответ: в данной задаче - 2 решения:
1) если основания наклонных находятся по разные стороны от проекции точки на данную линию, то расстояние между ними равно
8(√3+1) см ≈ 21,86 см;
2) если основания наклонных находятся по одну сторону от проекции точки на данную линию, то расстояние между ними равно
8(√3-1) см ≈ 5,86 см.
Для того, чтобы найти величину третьего внешнего угла треугольника мы прежде всего должны вспомнить чему равна сумма всех внешних углов треугольника.
Но прежде всего давайте посмотрим, что нам дано в условии. Итак, нам известно, что два внешних угла треугольника равны 120° и 160°.
Сумма внешних углов треугольника равна 360°. Для того, чтобы найти чему равен третий внешний угол треугольника мы должны из 360° вычесть сумму двух других углов треугольника.
Давайте вычислим,
360° - (120° + 160°) = 360° - 280° = 80°.
I. Признак подобия треугольников по двум углам.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Так как острые углы равнобедренных прямоугольных треугольников равны 45º, то по этому признаку подобны:
5. любые два равнобедренных прямоугольных треугольника
.----------------
2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС.
Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны.
В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120
Тогда
Вариант 1)
АВ=16- основание меньшего треугольника
k=АМ:АВ=80:16=5
ВС=АС=120:5=24
Высоту СН ∆ АВС найдем по т.Пифагора:
СН=√(ВС²-ВН²)=√512=16√2
Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см²
Вариант 2)
АВ=16 - боковая сторона меньшего треугольника.
Тогда k=AM:BC=120:16=7,5
АС=80:7,5=32/3
Тогда СН=АС:2=16/3
Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3
S ∆АВС=ВН*СН=(32√2)/3)*16/3
S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²