Сторона ромба равна 13 дм, а одна из диагоналей - 10 дм. Найдите вторую диагонал
Поэтому тр-к АВО - пр/уг.ВО^{2} = 144ВО =12ВР = 2*ВО = 2*12 = 24 (дм) - это и есть вторая диагональ. Пусть ромб будет АВСР, АС = 10 дм, О -- т. перес. диаг. (они, кстати говоря, перпендикулярны)АВ^{2} = АО^{2} + ВО^{2}АО= АС/2=5ABCD -- ромб. BD, AC --его диагонали. AC и BD -- перпендикулярны , за свойством ромба. Отсюда получились четыре прямоугольный треугольника, берём любой например AOB ( угол О -- прямой то есть 90 градусов ) по теореме Пифагора АВ( в квадрате)= АО( в квадрате)+ВО( в квадрате) ..13( в квадрате)=5( в квадрате)+X( в квадрате).. X( в квадрате)=169-25=144 X=144(корень квадратный)=12-- это половинка диагонали, а вся равна 24 так как 12 умножить на 2 = 24ответ: 24 дм.
Боковая площадь поверхности круглого конуса равна произведению половины окружности основания (C) на образующую (L): S2 = 1/2 C L, C = 2 Pi R,
Выразим L через R. Если рассмотреть сечение конуса плоскостью, проходящей через ось конуса, то получится равнобедренный треугольник со сторонами L, L и 2R. Если в этом треугольнике провести отрезок, из середины основания в точку касания (это радиус r), то он будет перпендикулярен боковой стороне (как радиус, проведенный в точку касания). Этот радиус r отсекает от прямоугольного треугольника (образованного медианой, проведенной к основанию равнобедренного треугольника, радиусом R и образующей L) меньший прямоугольный треугольник со сторонами R, r, x (x - обозначение для одного из катетов меньшего треугольника).
Меньший треугольник подобен большому, значит: x/R = R/L, L = R^2/x = R^2/(корень из (R^2 - r^2)) = R^2/(корень из (R^2 - 16/25 R^2)) = R^2/(3/5 R) = 5R/3 Тогда S2 = 1/2 C L = Pi R 5R/3 = 5 Pi R^2 /3 S1/S2 = (48/25 Pi R^2)/(5 Pi R^2 /3) = 144/125