A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
DH = HF = 6 см.
КН - проекция наклонной МН на плоскость DKF, значит, МН⊥DF по теореме о трех перпендикулярах.
МН - искомое расстояние.
ΔDKH: ∠KHD = 90°, по теореме Пифагора
KH = √(KD² - HD²) = √(100 - 36) = √64 = 8 (см)
ΔКМН: ∠MKH = 90°, по теореме Пифагора
MH = √(MK² + KH²) = √(225 + 64) = √289 = 17 (см)
2. ВА⊥AD, BA - проекция наклонной В₁А на плоскость основания. Значит, В₁А⊥AD по теореме о трех перпендикулярах.
∠В₁АВ - линейный угол двугранного угла В₁АDB - искомый.
Так как ABCD квадрат, его сторона АВ = АС/√2 = 6 (см)
Δ В₁АВ: ∠В₁ВА = 90°,
cos∠В₁АВ = AB/AВ₁ = 6/(4√3) = √3/2
⇒ ∠В₁АВ = 30°