Объяснение:
Итак, чертеж к задаче прикреплен снизу. Так как треугольник является прямоугольным, то в нем действует теорема Пифагора: квадрат гипотенузы равен сумме квадратов двух катетов прямоугольного треугольника. В алгебраической форме эту теорему записывают так:
c^2 = a^2 + b^2 (^2 - вторая степень числа)
Из этой формулы выразим a^2, т.к. именно катет a нужно найти(см. чертеж внизу)
a^2 = c^2 - b^2
Но мы то выразили только КВАДРАТ стороны, а не саму сторону. То есть, чтобы найти саму сторону, нам нужно извлечь корень квадратный из выражения c^2 - b^2
В итоге, вычислив значение а(см. картинку внизу), мы получаем ответ
Радиус вписанной в прямоугольный треугольник окружности находят по формуле:
r=(а+b-c):2,
где а, в - катеты, с - гипотенуза треугольника
Радиус и сумма катетов даны в условии задачи.
2=(а+b-c):2
4= 17-c
с=17-4
с=13 см - это длина гипотенузы.
Периметр равен 13+17=30 см
Можно заметить, что стороны этого треугольника из Пифагоровых троек, и они равны 5, 12,13. , т.к. их сумма 17.
При желании каждый сможет в этом убедиться, применив теорему Пифагора.
Площадь треугольника
S=12*5:2=30 cм²
Не все и не всегда мы помним о пифагоровых тройках.
Когда известен периметр многоугольника и радиус вписанной в него окружности, площадь можно найти иначе - умножив половину периметра на радиус вписанной окружности, что в итоге даст тот же результат:
S= 30:2*2=30 см²