Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Объяснение:
точка О - центр вписанной окружности в треугольник АВС - пересечение биссектрис треугольника, ОМ = радиус вписанной окружности
точка О1 = центр окружности с радиусом =8, проводим перпендикуляры О1К и О1Н в точки касания, проводим О1С и О1А, треугольники АМО1=треугольнику О1СМ по двум катетам АМ=СМ, О1М общий, треугольники О1СК =треугольнику О1СМ по гипотенузе О1С и катету О1К=О1М =радиусу, треугольник О1НА=треугольнику О1МА по катету и гипотенузе (аналогично), угол О1СМ=углу О1СК , угол СО1К=углу СО1М значит СО1 - биссектриса, СО - тоже биссектриса (см.выше). Биссектрисы внутреннего угла и смежного с ним внешнего угла перпендикулярны, т.е угол ОСО1 =90 град. Треугольник ОСО1 - прямоугольный.
ОМ / СМ = СМ / О1М, ОМ / 6 = 6 / 8
36 = ОМ х 8, ОМ = 4,5