40 см² и 90 см².
Объяснение:
Теорема: отношение площадей подобных многоугольников равно квадрату коэффициента подобия.
1) Коэффициент подобия многоугольников равен отношению их периметров:
k = 3 : 2 = 1,5.
2) Квадрат коэффициента подобия:
k² = 1,5² = 2,25.
3) Пусть площадь меньшего многоугольника равна х, тогда площадь большего многоугольника равна 2,25 х. Составим уравнение и найдём х:
х + 2,25 х = 130
3,25 х = 130
х = 130 : 3,25
х = 40 см² - площадь меньшего многоугольника;
2,25х = 2,25 · 40 = 90 см² - площадь большего многоугольника.
ответ: 40 см² и 90 см².
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: