Рівнобедрений трикутник із бічною стороною а і кутом "альфа" при вершині обертається навколо прямої, що містить основу. Знайбіть об'єм утвореного тіла обертання
Дано : AB =AC = a ; ∠BAC = α
V - ?
Два Конуса
V =2*V₁ = 2*(1/3)S*H
S = π*R²=π*(AO)² = π*(acos( α /2) ) ² = π*a²cos²( α /2) || R = AO ||
H =BO =AB*sin (∠BAO) =asin (α /2)
V = 2*(1/3)S*H = (1/3)π*a²2cos²( α /2)*asin (α /2) =
= (1/3)π* a²*2cos²(α/2) ) *asin(α/2)= (1/3)πsinα*cos(α/2) a³ .
* * * 2sin(α/2)*cos(α/2) = sin2*(α/2) = sinα * * *
Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
Объяснение:
Образовались 2 прямоугольных треугольника ΔАОС и ΔАВС,и один равнобедренный ΔСОВ.
В ΔСОВ угол ВСО=углу ОВС(<B=180°-<C-<A=180°-60°-90°=30°),значит СО=ОВ=10 см.
Рассмотрим ΔАОС: катет ОА лежит против угла в 30°(СО- биссектриса угла в 60° по условию),значит ОА=1/2ОС=1/2*10=5 см
АВ=ОА+ОВ=5+10=15 см
По теореме Пифагора найдём АС
АС=√0В²-ОА²=√10²-5²=√100-25=√75=5√3 см
ВС=√АС²+АВ²=√(5√3)²+15²=√75+225=√300=10√3 см