М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anastasiasestak
anastasiasestak
22.04.2022 15:02 •  Геометрия

Прямая пересекает сторону треугольника авс в точках мк,соответствено так что мк паралейна ас. мв относится к ам,как 1 к 4.найдите периметр треугольника вмк,если периметр авс=25см.

👇
Ответ:
Exem76
Exem76
22.04.2022
МВ/АМ=1/4=1х/4х, МВ=х, АМ=4х, АВ=АМ+МВ=4х+х=5х, треугольник АВС подобен треугольнику ВМК по двум равным углам , уголВ-общий, уголА=уголВМК как соответственные, периметры подобных треугольников относятся как подобные стороны, периметрВМК/периметрАВС=МВ/АВ, периметрВМК/25=х/5х, периметрВМК=25*х/5х=5
4,5(79 оценок)
Открыть все ответы
Ответ:
zhenya214
zhenya214
22.04.2022

Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть

c2 = a2 + b2,

где c — гипотенуза треугольника.

Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:

a = c cos β = c sin α = b tg α = b ctg β,

где c — гипотенуза треугольника.

Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:

h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.

Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула

a2 = b2 + c2 – 2bc cos α.

Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).

Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения

Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).

Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.

Теорема 8 (формулы для вычисления площади треугольника).

4

Последняя формула называется формулой Герона.

Теорема 9 (теорема о биссектрисе внутреннего угла).

Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть

b : c = x : y.

Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)

.

Теорема 11 (формула для вычисления длины биссектрисы).

Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).

Теорема 13 (формула для вычисления длины медианы).

Доказательства некоторых теорем

Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:

4,6(2 оценок)
Ответ:
Leonelle
Leonelle
22.04.2022

1. В прямоугольном треугольнике сумма острых углов равна 90°.

Сумма углов в треугольнике равна 180°. В прямоугольном треугольнике есть прямой угол, равный 90°. 180° - 90° = 90° -- сумма оставшихся двух острых углов.

2. В прямоугольном треугольнике если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

Это теорема об угле в 30° в прямоугольном треугольнике.

3. Один из острых углов прямоугольного треугольника в 2 раза больше другого. Острые углы этого треугольника равны 60° и 30°

В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем

x + 2x = 90

3x = 90

x = 30° -- меньший острый угол

2x = 60° -- больший острый угол

4. Один из углов прямоугольного треугольника на 18° больше другого. Углы треугольника равны 1) 90°, 36°, 54°; 2) 90°, 72°, 18°

Задача имеет два ответа.

Треугольник прямоугольный ⇒ один из углов равен 90°

1 случай. Один острый угол больше другого на 18°.

Пусть x градусов -- меньший острый угол, тогда (x + 18) градусов -- больший, имеем

x + (x + 18) = 90

2x + 18 = 90

2x = 72

x = 36° -- первый острый угол

x + 18 = 54° -- второй острый угол

2 случай. Острый угол на 18° меньше, чем прямой угол (больше нельзя, так как в прямоугольном треугольнике нет тупых углов), тогда

90° - 18° = 72° -- величина первого острого угла

Так как сумма острых углов прямоугольного треугольника равна 90°, то найдём второй острый угол:

90° - 72° = 18°

В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем

x + 2x = 90°

3x = 90°

x = 30° -- меньший острый угол

2x = 60° -- больший острый угол

5. Существует ли треугольник с двумя прямыми углами? Нет.

Предположим, что такой треугольник существует. Тогда по теореме о сумме углов треугольника третий угол будет равен 0°, что невозможно для треугольника. Значит предположение неверное.

6. Сторона прямоугольного треугольника, лежащая против большего угла -- это гипотенуза.

У прямоугольного треугольника есть своя терминология. Стороны называются катетами и гипотенузами. Последняя лежит напротив прямого угла (он же наибольший в треугольнике).

7. В прямоугольном треугольнике один из острых углов равен 30°, а противолежащий ему катет равен 6 см. Гипотенуза равна 12 см.

Воспользуемся теоремой об угле в 30° в прямоугольном треугольнике. По ней, катет, лежащий напротив угла 30°, в два раза меньше гипотенузы, то есть гипотенуза в 2 раза больше катета:

6 * 2 = 12 см

8. Углы равнобедренного прямоугольного треугольника равны 90°, 45°, 45°.

Треугольник прямоугольный ⇒ один из углов равен 90°.

Треугольник равнобедренный, значит острые углы равны. В сумме они дают 90°. Пусть x градусов -- острый угол такого треугольника, тогда

x + x = 90°

2x = 90°

x = 45° -- острые углы треугольника

9. В треугольнике АВС ∠С = 90°, ∠В = 60°, СВ = 6 см, тогда AB = 12 см.

Найдём угол A: ∠A = 90° - ∠B = 90° - 60° = 30°

Воспользуемся теоремой об угле в 30°: AB = 2CB = 2 * 6 = 12 см

10. В ΔАВС ∠С = 90°, АВ = 15 см, СВ = 7,5 см, тогда ∠В = 60°.

∠A лежит напротив стороны CB, при этом 2CB = AB ⇒ по теореме об угле в 30° ∠A = 30°

Сумма острых углов 90° ⇒ ∠B = 90° - ∠A = 60°

4,6(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ