1) так как треугольник АВС равнобедренный и угол С=104 градуса, то угол А=В=(180-104)/2=38 градусов. (угол С не может лежать при основании, так как он тупой, а сумма всех углов треугольника равна 180) 2) точка М лежит на продолжении стороны СВ (так как угол А - острый) рассмотрим треугольник АМС: угол МСА=180-104=76 градусов (так как углы МСА и АСВ смежные) 3) треугольник АСМ прямоугольный (АМ - высота), тогда угол МАС = 90-76=14 (так как сумма 2 острых углов прямоугольного треугольника равны 90 градусов) 4) следовательно угол МАВ=МАС+САВ=14+38=52 градуса ОТВЕТ: 52 градуса
Для начала надо найти угол В и А то есть (180-104):2= 38 град. так как у нас равнобедренный треугольник. Затем затем рассматривает треугольник АВМ Угол ВМА равен 90 градусов потому что у нас высота) затем находим угол ВАМ тесть (90+38)-180=52 градуса. Вль и всё решение
Вектор АВ: (1-3=-2; 3-5=-2) = (-2;-2). Вектор АС = -СА = (-1;1). cos(<АВ-АС) = |(2*1-2*1)|/(√(2²+2²)*√(1²+1²) = 0/(√8*√2) = 0. Если косинус равен нулю, то угол равен 90 градусов. Треугольник прямоугольный.
2) Для определения координат центра описанной около треугольника окружности надо решить систему из уравнений двух срединных перпендикуляров к сторонам треугольника. Но для данной задачи это решается просто - центр находится на середине гипотенузы ВС. Точка О((1+4)/2=2,5;(3+4)/2=3,5) = (2,5; 3,5).
Для нахождения вероятности этого надо найти соотношение площадей круга и шестиугольника. Площадь круга, как известно: S = П*r^2, где П=3,14, r - радиус. Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) = / 2 * r Отсюда площадь треугольника: 1/2 * r * / 2 * r = / 4* r^2 Площадь шестиугольника равна: 6 * / 4* r^2 = 1,5 * * r^2 Теперь делим её на площадь круга: 1,5 * * r^2 / (П*r^2) = 1,5 * / П Численно это примерно равно 0,83 или 83%.
2) точка М лежит на продолжении стороны СВ (так как угол А - острый)
рассмотрим треугольник АМС: угол МСА=180-104=76 градусов (так как углы МСА и АСВ смежные)
3) треугольник АСМ прямоугольный (АМ - высота), тогда угол МАС = 90-76=14 (так как сумма 2 острых углов прямоугольного треугольника равны 90 градусов)
4) следовательно угол МАВ=МАС+САВ=14+38=52 градуса
ОТВЕТ: 52 градуса