1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
ответ:
контрольная 2:
1) рассмотрим треугольники aod и сов:
ао=ов
со=od
угол aod = угол сов, т к они вертикальные
трегольник аоd = трегольник сов по 1 признаку
2)т.к треугольник авс - равнобедренный, то ак - биссектриса и медиана => ск = кв = сd/2 = 12
рассмотрим треугольник акв:
ак = 16
кв = 12
ав = 20
р = ак + кв + ав = 16 + 12 + 20 = 48
3)т.к. угол м = угол n, то треугольник мкn - равнобедренный => мк=кn
p=mk+kn+mn=170
mk+kn=170-54
mk+kn=116
mk=kn=116: 2=58
4) ab=x
ac=x+10
bc=2x
x+x+10+2x=70
4x+10=70
4x=60
x=15
ac=15+10=25
bc=15*2=30
5)т.к. см и ак - медианы, то ам=ск => треугольники амс и акс равны по 1 признаку => углы амс и акс равны