И.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три р.д. пятисот шестидесяти семи семисот восьмидесяти девяти ста двадцати трёх д.п. пятистам шестидесяти семи семистам восьмидесяти девяти ста двадцати трём в.п. пятьсот шестьдесят семь семьсот восемьдесят девять сто двадцать три т.п. пятьюстами шестьюдесятью семью семьюстами восемьюдесятью девятью ста двадцатью тремя п.п. пятистах шестидесяти семи семистах восьмидесяти девяти ста двадцати трёх
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. чтобы доказать эту теорему, построим два прямоугольных гольника abc и а'в'с', у которых углы а и а' равны, гипотенузы ав и а'в' также равны, а углы с и с' — прямые наложим треугольник а'в'с' на треугольник abc так, чтобы вершина а' совпала с вершиной а, гипотенуза а'в' — с равной гипотенузой ав. тогда вследствие равенства углов a и а' катет а'с' пойдёт по катету ас; катет в'с' совместится с катетом вс: оба они перпендикуляры, проведённые к одной прямой ас из одной точки в (§ 26,следствие 3). значит, вершины с и с' совместятся. треугольник abc совместился с треугольником а'в'с'. следовательно, /\ авс = /\ а'в'с'.эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
значит
3,14*2²=3,14*4=12,56см²
площадь сектора = пр²*альфа/360
то есть
12,56* 90/360 = 3,14см²
ответ: площадь сектора 3,14 см²