Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
Данный треугольник - прямоугольный. Это видно из отношения сторон 3:4:5 - отношения сторон так называемого «египетского» прямоугольного треугольника. Радиус описанной вокруг прямоугольного треугольника окружности равен половине гипотенузы. R=5:2=2,5 Радиус вписанной в прямоугольный треугольник окружности находят по формуле: r=(а+b-c):2, где а и b - катеты, с - гипотенуза. r=( 7-5):2=1 Площадь круга находим по формуле: S=πr² S (опис)= π R²=π*6, 25 (единиц площади) S (впис)=πr²= π*1²=π ( единиц площади)