Основание прямого параллелепипеда -ромб с периметром 20 см и диагональю 8 см.высота параллелепипеда равна меньшей диагонали его основания.найти объем параллелипипеда.(по возможности если можно,рисунок)
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так: Отсюда: Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда: ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
Все стороны ромба равны:
АD = Pabcd / 4 = 20/4 = 5 см
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Пусть АС = 8 см, тогда АО = 4 см.
ΔAOD прямоугольный, египетский, ⇒ ОD = 3 см. BD = 6 см.
Так как высота равна меньшей диагонали, то АА₁ = 6 см.
V = Sосн · AA₁
Площадь ромба равна половине произведения его диагоналей:
Sabcd = 1/2 AC · BD = 1/2 · 8 · 6 = 24 см²
V = 24 · 6 = 144 см³