ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.
h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.
Сторона а основания равна:
а = h/cos 30° = (3√3/4)/(√3/2) = 3/2.
Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.
Основание пирамиды вписывается в шар по окружности радиуса Ro.
Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.
Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.
Для шара это будет диаметральное сечение.
Радиус шара Rш = (abc)/(4S).
Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).
Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.
Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.
Объём шара V = (4/3)πR³ = (4/3)π куб
Объяснение:
По углу 30 градусов и длине АВ можно найти все стороны треугольника АВС: АВ = 12см. BС= 8√3см. СA = 4√3 см. Также в прямоугольном треугольнике длина высоты раdна частному произведения катетов и гипотенузы (формула площади): AB*AC/BC=6см. Далее смотрим: в плоскости PAH треугольник PAH прямоугольный. По теореме пифагора находим гипотенузу PH = √(8*8 + 6*6) = 10см. Также можно сразу увидеть что это треугольник "золотой": стороны кратны 3:4:5, а угол прямой(поэтому можно узнать PH и без т. Пифагора)
Решение:
Очевидно, что точка
Возьмем произвольную вершину квадрата, например C. Рассмотрим треугольник
Тогда
Пользуясь теоремой Пифагора в треугольнике