Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).
Находим координаты направляющего вектора прямой NM:
NM: (1; 1; 1).
Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :
n = (A; B; C). То есть, A = 1, B = 1, C = 1.
Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:
A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.
Подставляем данные -
α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.
ответ: уравнение плоскости α: x + y + z - 3 = 0.
1
1) δавс, ∟авс = 35 °, ∟асв = 83 °, вм и ск -
высоты, пересекаются в н. найходим внс.
2) δавс.
∟а = 180 ° - (∟abc + ∟асв),
∟а = 180 ° - (35 ° + 83 °) = 62 °.
3) δавм.
∟amb = 90 ° (вм - высота),
∟abm = 180 ° - (∟амв + ∟a), ∟abm = 28 °.
4) δквс.
∟вкс = 90 ° (ск - высота),
∟вск = 180 ° - (∟вкс + ∟квс),
∟вск = 55 °, ∟abc = 35 °,
∟abc = ∟abm + ∟mbc, 35 ° = 28 ° + ∟mbc, ∟mbc = 7 °.
5) δнвс.
∟нвс = 7 °, ∟bch = 55 °,
∟внс = 180 ° - (∟hbc + ∟всн),
∟внс = 180 ° - (7 ° + 55 °), ∟bhc = 180 ° - 62 ° = 118 °.
ответ 118
это точно все дано или было что-то еще?
AC^2=AB^2-BC^2=225-81=144,
значит AC=12