Если единственный известный угол равен 90°, а в условиях приведены длины двух сторон треугольника (b и c), определите, которая из них является гипотенузой - это должна быть сторона больших размеров. Затем воспользуйтесь теоремой Пифагора и рассчитайте длину неизвестного катета (a) извлечением квадратного корня из разности квадратов длин большей и меньшей сторон: a = √(c²-b²). Впрочем, можно не выяснять, которая из сторон является гипотенузой, а для извлечения корня использовать модуль разности квадратов их длин.
Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.
Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.
Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника. Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5. 1) КН║АС, КН = АС/2 как средняя линия треугольника АВС, МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм. КНРМ - параллелограмм. 2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что НР = KM = BD/2 (как средние линии соответствующих треугольников) КН = МР = АС/2. В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб. 3) Все то же и КН║МР║АС, КМ║НР║BD. Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник. 4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника: КН = АС/2 = 15/2 = 7,5 см НР = АВ/2 = 10/2 = 5 см КР = ВС/2 = 12/2 = 6 см