Задача: Известно, что в треугольниках АВС и А1В1С1 А = А1, АВ = А1В1, АС = А1С1. На сторонах ВС и В1С1 отмечены точки К и К1, такие, что СК = С1К1. Докажите, что ∆ АВК = ∆ А1В1К1.
ответы:Δ АВС=ΔА1В1С1 по первому признаку равенства треугольников, так как ∠А=∠А1, АВ=А1В1,АС=А1С1- по условию.
В равных треугольниках соответственные стороны равны,
значит ВС=В1С1, тогда ВК=В1К1, так как КС=К1С1 - по условию.
В ΔАВК иΔА1В1К1:
АВ=А1В1, ВК=В1К1, ∠В=∠В1, значит ΔАВК =ΔА1В1К1 по первому признаку равенства треугольников, что и требовалось доказать.
Рисунок: картинка
1)Найдите координаты точки пересечения прямых, заданными уравнениями
x+2y-5=0
3x-y-8=0
x+2y-5=0
3x-y-8=0
х=5-2у
3(5-2у)-у-8=0
15-6у-у-8=0
-7у=-7
у=1
х=5-2*1=3
ответ:(3;1)
2) В каких точках пересекается с осями координат прямая заданная уравнением:
2x-5y+20=0
при х=0 2*0-5у+20=0 Итак, первая точка (0;4)
5у=20
у=4
при у=0 2х-5*0+20=0 Итак, вторая точка (10;0)
2х=20
х=10
ответ: (0;4), (10;0)
3)Прямые y=x+4, y=-2x+1 пересекаются в некоторой точке О, найдите ее координаты.
х+4=-2х+1
х+2х=1-4
3х=-3
х=-1
у(-1)=-1+4=3
ответ: (-1;3)