.(Вравнобедренную трапецию с острым углом a вписана окружность. какой процент площади трапеции занимает площадь четырехугольника с вершинами в точках касания?).
Из площади основания находи сторону основания a=корень из 108 =6 корней из 3 боковая поверхность состоит из 4 одинаковых треугольников, площадь каждого 216/4=54 Из нее надо найти высоту боковой грани 54=(6корней из 3*h)/2 h=6 корней из 3 чтобы найти высоту пирамиды, надо в прямоугольном треугольнике с гипотенузой 6 корней из 3(высота боковой грани) и катетом(половина стороны основания) 3 корня из 3, найти недостающий катет по т. Пифагора получим высоту пирамиды 9 ну объем по формуле v=1/3*s*h=1/3*108*9=324
1) Обозначим радиус вписанной в прямоугольную трапецию окружности за х. Свойство трапеции, в которую вписана окружность, - сумма оснований равна сумме боковых сторон. Высота трапеции равна 2х. Наклонная боковая сторона равна √((2х)²+(28-21)²) = √(4х²+49). Поэтому 21+28 = 2х + √(4х²+49). Перенесём 2х влево и возведём в квадрат. (49-2х)² = 4х²+49. 2401 - 196х + 4х² = 4х²+49. 196х = 2401 - 49 = 2352. х = 2352/196 = 12 см. Высота трапеции равна 2х = 2*12 = 24 см. Площадь трапеции равна 24*((21+28)/2) = 24* 24,5 = 588 см².
2) Примем один катет за х, второй за у. Квадрат гипотенузы равен х²+у² (это площадь). Площадь треугольника равна (1/2)ху. По заданию х²+у² = 4*((1/2)ху). х²+у² = 2ху. х² - 2ху +у² = 0. (х - у)² = 0. х - у = 0. х = у. Это равнобедренный треугольник, его острые углы равны по 45 градусов.
Решение: Пусть ABCD – данная трапеция, AB||CD,AD=BC,AB<CD.
Угол ADC=угол BCD=a
Пусть О – центр вписанной в трапецию окружности. K, L, M, N – точки касания окружности со сторонами AB,BC,CD,AD соотвеcтвенно.
Площадь трапеции равна (AB+CD)\2*2r=(AB+CD)*r.
Центр вписанной окружности лежит на пересечении биссектрис.
Угол ODC=угол OCD=а\2
Угол OAB=угол OBA =90-а\2.
Далее по свойству суммы углов четырехугольника (сумма равна 360, один из улов а или 180-а, два других по 90)
Угол KON= угол MON=180-а.
Угол KOL= угол MOL=a.
Площадь KLMN равна 4*1\2*r^2*sin a=2*r^2*sin a (площадь четырех равновеликих треугольников , две стороны равны радиусам, синусы углов равны sin а).
DN=CN=r*ctg (a\2), CD=2*r*ctg (a\2).
AL=BL=r*ctg(90-a\2)=r*tg (a\2), AB=2*r*tg (a\2)
Площадь трапеции ABCD равна (AB+CD)*r=(2*r*ctg (a\2)+2*r*tg (a\2))*r=
2*r^2*(tg(a\2)+ctg(a\2))).
площадь четырехугольника с вершинами в точках касания занимает процент площади трапеции
2*r^2*sin a\(2*r^2*(tg(a\2)+ctg(a\2))) *100%=
=sin a\(tg (a\2)+ctg(a\2))*100%=
=sin a*tg (a\2)\ (tg^2 (a\2)+1)*100 %=(sin a^2 * 50) %
ответ: (sin a^2 * 50) %