По условию:AB=16 дм;AC:BC=5:3.
Найти:Длины отрезков,которые будут меньше длины отрезка BC.
Решение: Найдем для начала длины отрезков AC и BC.На рисунке я их нашел уравнением.Пускай AC будет 5х,а BC 3x.В итоге у нас получится AC=10 дм,а BC=6 дм.Но в условии нас просят найти отрезки меньше длины BC.Поэтому мы делим отрезки AC и BC.В итоге, мы получаем:AK,KC,CD,BD.Чтобы найти AK,я поделил AC на 2,т.к K - средняя линия AC.Тогда KC=AK=5 дм.Такие же действия проделываем и с BC.И мы получим BD=CD=3 дм.
ответ: BD=3 дм,СD=3 дм,AK=5 дм,KC=5 дм
Площадь равнобедренной трапеции равна полусумме оснований, умноженной на высоту.
Высота у нас уже есть Одно из оснований - тоже. Теперь надо найти большее основание. Если опустить высоту с меньшего основания на большее, то получим прямоугольный треугольник, где гипотенузой будет боковая сторона, одним из катетов - высота трапеции, а вторым катетом - часть основания трапеции. Чтобы узнать большее основание трапеции, нам нужно вычислить этот неизвестный катет в треугольнике, потому что длиной большего основания будет сумма двух таких катетов с меньшим основанием. Так как точно такой же треугольник можно получить, опустив высоту из другой точки меньшего основания трапеции. По теореме Пифагора вычисляем неизвестный катет . Значит длина наибольшего катета равна 7+6+6=19 см.