Начнём с того, что построим рисунок. Если посмотреть сверху, то видим правильный шестиугольник со стороной 4.Как известно, можно разбить его на 6 равных треугольников. И все они будут равносторонние со стороной 4. Дальше рассмотрим один их треугольников, а именно: опустим высоту. Это и есть радиус вписанной окружности. По т.Пифагора: корень из (16 - 4)=2*корень из 3. V призмы находится по формуле V=HS. Зная радиус и высоту, находим V. V=HS=HpiR^2=4/pi*pi*12=48. ответ:48
Отрезок ОМ и есть радиус окружности, вписанной в равнобедренный треугольник ABC и он равен 7,5 см. Тогда по свойству пропорции ОВ = 7,5*17/ 15 = 8,5 см, а высота треугольника ВМ = 7,5 + 8,5 = 16 см. Синус половинного угла при вершине треугольника равен: sin (a/2) = 7.5 / 8.5 = 15 / 17, а соs (a/2) = √(1-sin²(a/2)) = √(1-225/289) = 8/17. Боковая сторона равна а = Н/соs (a/2) = 16 *17/ 8 = 34 см. Теперь, зная боковую сторону и sin(a/2), находим основание треугольника: б = АС = 2*а*sin (a/2) = 2*34*(15/17) = 60 см, Периметр треугольника равен 2а+б = 2*34+60 = 128 см. Площадь треугольника равна 1/2*Н*б = 1/2*16*60 = 480 см².
Лови 1) пусть H- основание перпендикуляра опущенного из М на плоскость ЕВК, по гипотенузам и общему катету треугольники МВH,MKH-конгруентны, а значит BH=KH, значит вершина равнобедренного тругольника ВМК лежит на серединном перпендикуляре к ВК, т.е на диагонали ЕP таким образом МH , перпендикулярная всей плоскости ЕВК и прямой ВК в частности принадлежит EMP, вторая прямая перпендикулярная BK- это сама ЕP, по двум прямым, вся плоскость ЕМP перпендикулярна ВК... 2) сторона ВС перпендикулярна АВ и кроме того МА- по условю задачи, значит ВС перпендикулярна всей плоскости МАВ и отрезку МВ в частности, что и доказывает требуемое...
V призмы находится по формуле V=HS. Зная радиус и высоту, находим V. V=HS=HpiR^2=4/pi*pi*12=48. ответ:48