АВСД, А1В1С1Д1 - квадраты (призма правильная) пускай О - пункт пересечения диагоналей АС и ВД квадрата АВСД, раз точки E и F- середины рёбер AD и DC соответственно, то EF - средняя линия тр. АДС ⇒ АС ll EF ВО = ОД (О - пункт пересечения диагоналей) проведем в плоскости ВДВ1 прямую ОК, так, что ОК ll B1Д тр. АКВ = тр. СКВ (по двум катетам) ⇒ АК = КС
дальше рассматриваем треугольник АКС, АО = ОС (О - пункт пересечения диагоналей) ⇒ КО - медиана тр. АКС равнобедренный ⇒ КО - высота ⇒ КО _l_ AC а раз KO ll B1D и AC ll EF ⇒ B1D _l_ EF
АВСДЕФК - пирамида с вершиной К. КО=4см - высота. КМ - апофема. М∈АВ. Боковая поверхность правильной шестиугольной пирамиды состоит из шести равнобедренных тр-ков, равных ΔАВС, следовательно площадь одного тр-ка: S3=Sбок/6=192/6=32 см². Апофема в тр-ке АВС представляет собой высоту, опущенную на основание. КМ=АВ. S3=КМ·АВ/2=АВ²/2, АВ=√(2·S3)=8 см. Площадь правильного шестиугольника, находящегося в основании, состоит из шести правильных тр-ков. Площадь одного рассчитывается по формуле S=a²√3/4 Sш=6·S=3a²√3/2=96√3 см² V=Sш·КО/3=128√3 см³.
пускай О - пункт пересечения диагоналей АС и ВД квадрата АВСД,
раз точки E и F- середины рёбер AD и DC соответственно, то EF - средняя линия тр. АДС ⇒ АС ll EF
ВО = ОД (О - пункт пересечения диагоналей)
проведем в плоскости ВДВ1 прямую ОК, так, что ОК ll B1Д
тр. АКВ = тр. СКВ (по двум катетам) ⇒ АК = КС
дальше рассматриваем треугольник АКС, АО = ОС (О - пункт пересечения диагоналей) ⇒ КО - медиана
тр. АКС равнобедренный ⇒ КО - высота ⇒ КО _l_ AC
а раз KO ll B1D и AC ll EF ⇒ B1D _l_ EF
________________________________________________________________________