треугольник АВС, АН=30 и СМ=39 медианы, АМ=МВ, ВН=НС, МН-средняя линия треугольника=1/2АС=26/2=13, АМНС - трапеция, МН параллельна АС, из точки Н проводим линию параллельную СМ до пересечения ее с продолжением АС в точке Е, ЕН=СМ=39, СМНЕ- параллелограмм, СЕ=МН=13, АЕ=АС+СЕ=26+13=39
треугольникАНЕ равнобедренный, АЕ=ЕН=39, проводим высоту ЕТ=медиане=биссектрисе на АН, АТ=ТН=1/2АН=30/2=15, треугольникАТЕ прямоугольный, ЕТ²=АЕ²-АТ²=1521-225=1296, ЕТ=36, площадь АНЕ=площадь трапеции АМНС=1/2*АН*ЕТ=1/2*30*36=540, что составляет 3/4 площади АВС
(площадь треугольника отсекаемого средней линией (МН)=1/4 площади АВС, можно подсчитать самим),
площадь АВС=площадьАМНС*4/3=540*4/3=720
АВС-треуг. , АС-основание, АВ=ВС, СД и АЕ-медианы.
треугольники АДС=СЕА, т. к. АС-общая, углы ДАС=ЕСА(углы при основании в равнобедр. треуг.), АД=ЕС, т. к. АЕ и СД-медианы, АД=ДВ=1/2 АВ, СЕ=ВЕ=1/2 ВС(ВС=АВ, т.к. треуг. равнобедр.)
А если треуг. АДС=СЕА, то и стороны их ДС=АЕ, что и требовалось доказать