1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Дано: Решение:
∠AOB = 1/9 ∠BOC ∠AOB = ∠COD и ∠BOC = ∠DOA как
вертикальные углы при пересекающихся
Найти: ∠AOB; ∠BOC; прямых.
∠COD; ∠DOA Тогда: ∠AOB = ∠COD = х
∠BOC = ∠DOA = 9х
Сумма всех 4-х углов - 360°
2*(х + 9х) = 360
10х = 180
х = 18 9х = 162
∠AOB = ∠COD = 18°
∠BOC = ∠DOA = 162°
Может так ?
Угол при вершине:
Окружность составляет 360°
Количество углов