СА – касательная к окружности. Вычислите градусную меру угла АВО, если ∠ВАС=58°.
[3]
2. Равнобедренный треугольник АВС (АВ=ВС) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОС=70°. [4]
3. В окружности с центром в точке О проведен диаметр РМ=16,8 см и хорда АК, перпендикулярная РМ и равная радиусу данной окружности. Диаметр РМ и хорда АК пересекаются в точке Е.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АЕ;
d) вычислите периметр треугольника АОК.
4. В прямоугольном треугольнике СОК ( О = 90°) , СК= 18, СКО = 30° с центром в точке С проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой КО; [4]
b) окружность не имела общих точек с прямой КО;
c) окружность имела две общие точки с прямой КО?
5. Постройте треугольник АМР по сторонам АM=7 см, МK=6 см и углу ∠АМР = 45о. В полученном треугольнике постройте серединный перпендикуляр к стороне АР
Объяснение:
1. Для начала найдём все углы треугольника ΔABC.
<A = 27°; <B = 99° ⇒ <C = 180-(99+27) = 54°.
Так как биссектриса CD — делит угол <C на 2 равные части, то: <DCA = 54/2 = 27°.
Тоесть: <DAC == <DCA ⇒ DA == DC, что и означает, что треугольник ΔADC — равнобёдренный, так как боковые стороны равны.
2.
Угол — противоположный стороне DB — это <BCD, который в треугольнике ΔDBC — считается самым маленьким углом — 27°.
А сторона, противолежащая самому маленькому углу — считается самой маленькой стороной в определённом треугольнике.
В треугольнике ΔADC — опять же, самый маленький угол — <A (27°), а противолежащая ему сторона — DC, которая самая маленькая в треугольнике ΔADC.
И так как углы совпадают, то стороны равны, тоесть BD == CD.