Прямая, параллельная стороне ab=5 треугольника abc и проходящая через центр вписанной в него окружности, пересекает стороны bc и ac в точках m и n соответственно. найдите периметр четырехугольника abmn если mn=3
Центр вписанной в треугольник окружности находится на пересечении биссектрис углов треугольника. Если провести из центра этой окружности перпендикуляр ОД на сторону АВ, то четырехугольник abmn (а это трапеция по заданию, так как mn параллельно АВ), то получим две прямоугольные трапеции, в которых диагонали АО и ВО - биссектрисы острых углов. По свойству биссектрисы острого угла трапеции - она отсекает на верхнем основании отрезок, равный боковой стороне. То есть верхнее основание - это mn - равно сумме боковых сторон и эта сумма равна 3. Тогда периметр четырехугольника abmn равен 5 + 3 + 3 =11.
1) В основании пирамиды квадрат со стороной 16. Диагонали АС и BD по теореме Пифагора АС=BD=√(16²+16²)=16·√2 Высота пирамиды H=SO, O- центр квадрата, точка пересечения диагоналей и одновременно центр описанной окружности, центр вписанной окружности. По теореме Пифагора H²=SO²=SA²-AO²=17²-(16√2/2)²=289-128=161 H=√161 V=(1/3)S(осн)·Н=(1/3)·16²·√161=256√161/3 куб. ед.
2) Центр окружности, описанной около прямоугольного треугольника - середина гипотенузы. R=c/2 c²=1²+5²=26 R=(√26)/2 V(цилиндра)=S(осн.)·H=πR²·H=π·((√26)/2)²·(8/π)=52 куб. ед.
Продолжим боковые стороны до их пересесечения. Образуется прямоугольный равнобедренный треугольник. Пусть большее основание трапеции А. Катет треугольника А*sqrt(2)/2. Другой катет такой же. Биссектриса делит сторону в отношении прилежащих сторон. Значит боковая сторона В удовлетворяет соотношению: В/(A*sqrt(2)/2-B)=sqrt(2) B=A-B*sqrt(2) B=A/(1+sqrt(2)) Проекция боковой стороны на основание: А*(sqrt(2)/2)/(1+sqrt(2)) Меньшее основание это разность большего основания и двух проекций: А-A*sqrt(2)/(1+sqrt(2)). Тогда : А-A*sqrt(2)/(1+sqrt(2))+A*sqrt(2)*2/(1+sqrt(2))=36*sqrt(2) A +A*sqrt(2)-A*sqrt(2)+A*sqrt(2)*2=36*sqrt(2)+72 A*(1+2sqrt(2))=36*(sqrt(2)+2) A=36*(sqrt(2)+2)/(1+2sqrt(2))
Дописал до этого места. Больше нет времени. Пытался отправить как комментарий ( может пригодится). Как коммент. пишут длинный. Может еще и с ошибкой. Не нужно, отметьте, как нарушение.
Если провести из центра этой окружности перпендикуляр ОД на сторону АВ, то четырехугольник abmn (а это трапеция по заданию, так как mn параллельно АВ), то получим две прямоугольные трапеции, в которых диагонали АО и ВО - биссектрисы острых углов.
По свойству биссектрисы острого угла трапеции - она отсекает на верхнем основании отрезок, равный боковой стороне. То есть верхнее основание - это mn - равно сумме боковых сторон и эта сумма равна 3.
Тогда периметр четырехугольника abmn равен 5 + 3 + 3 =11.