В результате вращения прямоугольного треугольника образуется КОНУС. В нем: образующая = 10 см, и угол между боковой стороной и основанием = 30°.
Рассмотрим ΔSOA ( SA=10 см, угол А=30°). Т.к. катет SO лежит против угла 30°, то он равен половине гипотенузы, то есть 5 см.
Дальше нужно найти катет АО. За теоремой Пифагора он равен √75.
Теперь нужно найти площать основания. S(осн.) = πr² = (√75)²π = 75π cm².
Теперь объём: V(конуса) = ⅓ S(осн.)×Н, где Н-высота конуса.
V=⅓ × 75 × 5 =125 см³.
ответ: 125 см³.
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10
R³=64
R=4
S=πR²
S=16π