Тк объемы равны то если r1 и r2 радиусы оснований а h1 и h2 вычосы цилиндров то их объемы равны pi*r1^2*h1 и pi*r2^2*h2 тогда тк объемы равны то сократив на pi r1^2*h1=r2^2*h2 найдем теперь их боковые поверхности s1=2*pi*r1*h1 s2=2*pi*r2*h2 деля их друг на друга получим сократив на 2pi s1/s2=r1*h1/r2*h2 из 1 равенства следует что r1^2*h1/r2^2*h2=1 тогда преобразовав наше выражение следующим образом имеем s1/s2=(r1^2*h1/r2^2*h2*)*(r2/r1)=r2/r1 то есть s1/s2=r2/r1 то есть боковые поверхности обратно пропорциональны радиусам что и требовалось доказать
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.