Вравнобедренном треугольнике основание равно 10, а боковая сторона 13 см. найдите радиус r вписанной в него и радиус r описанной около него окружностей.
Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(169-25)=12
площадьАВС=1/2АС*ВН=1/2*10*12=60
радиу описанной окружности=(АВ*ВС*АС)/(4*площадьАВС)=(13*13*10)/(4*60)=7 и 1/24,
радиус вписанной=площадь/полупериметр, полупериметр=(13+13+10)/2=18, радиус вписанной=60/18=3 и 1/3