Проведем отрезки СО=ВО и АО. Рассмотрим треугольники ВАО и САО. Эти треугольники прямоугольные, так как радиус (ВО и СО), проведенный в точку касания (В и С), перпендикулярен касательной (АВ и АС). Также эти треугольники равны по катету (ВО и СО) и гипотенузе (АО - общая). В равных треугольниках все их элементы попарно равны. Значит АВ=АС. Отрезки касательных, проведенных из одной точки, равны между собой.
Обозначим стороны квадрата х, по теореме Пифагора х²+х²=32. Отсюда х=4. Вертикальная сторона квадрата является его высотой, т.е. высота квадрата равна 4.Горизонтальная сторона квадрата - является хордой, отсекающей от окружности основания дугу в 60 градусов. Соединим концы хорды с центром окружности, получим равнобедренный треугольник, т.к. боковые стороны равны-радиусы. Угол при вершине О-центральный, поэтому он равен 60 градусам. Углы при основаниях равны, т.к. треугольник равнобедренный. Сумма этих углов 180-60=120 градусам. Значит эти углы равны 120:2=60 градусам. Тогда этот треугольник-равностронний, значит все стороны равны. А боковые стороны - это радиусы. Значит радиус равен 4. Найдем сумму двух оснований цилиндра π*4²+ π*4²=32π.Площадь боковой поверхности равна произведению длины окружности на высоту цилиндра=2*π*4*4=32π,S полной поверхности цилиндра= 32π+32π=64π cm^2
Отрезки касательных, проведенных из одной точки, равны между собой.