Пусть одна диагональ равна х см, а другая (4+х)см. Площадь ромба находится как половина произведения его диагоналей. Получим: 1/2*х(4 + х)=(x^2+4x)/2. Теперь найдем х. Диагонали ромба перпендикулярны и точкой пересечения делится пополам (пересекаются в точке О). Рассмотрим прямоугольный треугольник АОВ. Один катет будет равен половине диагонали, то есть х/2, а второй катет будет равен половине другой диагонали, то есть 2+х/2. Гипотенуза равна 10 см (сторона ромба).
Составим уравнение по теореме Пифагора и решим уравнение: (2+х/2)^2+(х/2)^2=100 4+2х+х^2/4+х^2/4=100 |*4 16+2х+х^2+x^2=400 2x^2+8x+16=400 |:2 x^2+4x+8=200 x^2+4x-192=0 Решая квадратное уравнение, мы получим корни: 12 и -16 (не удовлетворяет условию задачи). То есть мы нашли одну диагональ и она равна 12 см. Подставим наше значение в формулу и найдем площадь ромба: (144+48)/2=96 см^2 ответ: площадь ромба равна 96 см^2
Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
Один катет будет равен половине диагонали, то есть х/2, а второй катет будет равен половине другой диагонали, то есть 2+х/2. Гипотенуза равна 10 см (сторона ромба).
Составим уравнение по теореме Пифагора и решим уравнение:
(2+х/2)^2+(х/2)^2=100
4+2х+х^2/4+х^2/4=100 |*4
16+2х+х^2+x^2=400
2x^2+8x+16=400 |:2
x^2+4x+8=200
x^2+4x-192=0
Решая квадратное уравнение, мы получим корни: 12 и -16 (не удовлетворяет условию задачи).
То есть мы нашли одну диагональ и она равна 12 см.
Подставим наше значение в формулу и найдем площадь ромба: (144+48)/2=96 см^2
ответ: площадь ромба равна 96 см^2