Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
ВМ=МА=ОК=10 см,
ВА=ВМ*2=10*2=20 см
АК=КС=ОМ=6 см,
АС=АК*2=6*2=12 см
2. Треугольники ACD и A1C1D1 равны по первому признаку равенства: две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника. В нашем случае:
АС=A1C1 по условию,
CD=C1D1 по условию
<ACD=ACB+BCD,
<A1C1D1=<A1C1B1+B1C1D1, но
<ACВ=<A1C1В1 по условию и BCD=B1C1D1 по условию также, значит
<ACD=<A1C1D1
3. Pаво=АВ+ОВ+АО
Раос= АО+ОС+АС, но ОВ=ОС, т.к. АО - медиана, поэтому периметр треугольника АОС можно записать в виде:
Раос=АО+ОВ+АС
Раво-Раос=2 - по условию, поэтому запишем:
(АВ+ОВ+АО) - (АО+ОВ+АС) = 2
АВ+ОВ+АО-АО-ОВ-АС=2
АВ-АС=2
АВ=2+АС
АВ=2+8=10 см
4. Зная внешний угол 130°, находим внутренний угол треугольника АВС <A:
<A=180-130=50°
Зная, что сумма углов треугольника равна 180°, находим <B:
<B=180-<C-<A=180-90-50=40°