С ответом я не но постараюсь объяснить ход мыслей. Боковые стороны равны, угол в 60 * находится у большого основания, так как не тупой. Проводим высоту из вершины В к основанию АС (допустим точка Е) Рассмотрим треугольник АВЕ в нем: 1) Прямой угол Е(по опр. высоты) 2) угол в 60* (по усл. У нас угол А) 3) следовательно угол В = 180-90-60=30* По св-ву угла в 30 * в прямоугольном треугольнике: катет лежащий против угла в 30* равен половине гипотенузе, в данном случае гипотенуза боковая сторона трапеции АВ и равна 8, тогда АЕ - 4 Проведем высоту Н из угла С и получим треугольник СДН, он равен треугольнику АВЕ по двум углам и стороне, следовательно ДН - 4. Рассмотрим ВСНЕ - прямоугольник, по св-ву прямоугольника его противоположные стороны равны. Т.е. ВС = ДН = 7 см У нас получились отрезки АЕ ЕН и НД - при сложении всех отрезков получаем основание АС = 15. ЗАГУГЛИ НЕ ПОМНЮ ФОРМУЛУ СР. ЛИНИИ У нас есть два основания АС=15 и ВС = 7 Расчет средней линии = (АС*ВС):2 у меня получилось 52,5, но это бред, в остальном уверен
Площадь треугольника АСD по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны. В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14. S=(1/2)*h*AD, отсюда высота треугольника АСD равна h=2S/AD=(2√14)/3. Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3. Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3. По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1. ответ: S=26√14/9 ≈ 12,1.
По теореме Пифагора:
СВ²=АВ²-АС²
СВ²=900-171
СВ=27
SinA=27/30=9/10=0,9
ответ: sinA=0,9