Если тупой угол равен 150, то острый = 30 (180-150); высота образует прямоугольный тр-к с катетом √3 и углом в 30 гр катет, лежащий напротив угла в 30 гр, равен половине гипотенузы, значит гипотенуза = 2√3; по т. Пифагора найдем другой катет: √12-3=3 проведем вторую высоту и получим прямоуг-к; в прямоуг-ке противоположные стороны равны (8=8); получаем, что большее основание = 3+3=8=14 S(8+14)/2*√3=11√3
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
высота образует прямоугольный тр-к с катетом √3 и углом в 30 гр
катет, лежащий напротив угла в 30 гр, равен половине гипотенузы, значит гипотенуза = 2√3; по т. Пифагора найдем другой катет:
√12-3=3
проведем вторую высоту и получим прямоуг-к; в прямоуг-ке противоположные стороны равны (8=8);
получаем, что большее основание = 3+3=8=14
S(8+14)/2*√3=11√3