Объяснение:
Проведем радиус из точки О к точке Е. таким образом АЕ перпендикулярно АВ (касательная). Рассмотрим АЕОД. АДО=АЕО=90, значит два остальных угла также по 90, АЕОД - прямоугольник. АД=ЕО=ОД(радиусы)=АЕ, АЕОД - квадрат. аналогично доказываем с ЕОСВ. Таким образом, получаем равенство сторон АД=ДО=ОС=ВС=ЕВ=ОЕ=АЕ
треугольник АЕО - равнобедренный (АЕ=ЕО) и прямоугольный. а значит углы при основании равны и каждый из них равен (180-90)/2=45, т.е. ЕАО=АОЕ=45.
Аналогично доказываем по треугольнику ОЕВ. ЕОВ=ЕВО=45.
АОВ это сумма двух углов, АОВ=АОЕ+ЕОВ. АОВ=45+45=90, что и требовалось доказать.
По условию, b = 8, α = 37°, γ=60°.
Тогда β = 180° - (α + γ) , тогда sin β = sin(180° - (α + γ)) = sin (α + γ)
По теореме синусов: b / sin β = c /sin γ, отсюда c = b · (sin γ / sin β)
Тогда площадь треугольника: S = 1/2 · b · c · sin α = b/2 · b · (sin γ / sin β) · sin α.
Таким образом S = (b2 · sin α · sin γ) / (2 · sin β)
S = [b2 · sin α · sin γ] / [2 · sin (α + γ)]
S = [64 · sin 37° · sin 60°] / [2 · sin 97°]
По таблице Брадиса:
sin 37° ≈ 0,602
sin 60° ≈ 0,866
sin 97° ≈ 0,993
S ≈ [64 · 0,602 · 0,866] / [2 · 0,993] ≈ 16,8
ответ ≈ 16,8
Шар касается к грани СSД в точке М, которая будет серединой апофемы SК.
Если из этой точки М провести перпендикуляр к SO, то получим точку О2 - ценр рассматриваемого круга. Тогда радиус этого круга будет О2М = 1/2ОК = 1/4аV3
Значит, S(круга) = pi*R^2 = pi*(1/4aV3)^2 = 3*pi*a^2 / 16