Две стороны треугольника равны 3 и 5. Известно, что окружность, проходящая через середины этих сторон и их общую вершину, касается третьей стороны треугольника. Найдите третью сторону.
––––––––––––––––
АН и СН - касательные к окружности.
АВ - секущая, АК - её внешняя часть.
АВ=3, АК=0,5 АВ=1,5
СВ - секущая, СМ - её внешняя часть
СВ=5, СМ=СВ:2=2,5
Квадрат касательной равен произведению секущей на её внешнюю часть. ⇒
АН ²=АВ•AK=3*1,5=4,5=450/100
АН=√4,5=√(450/100)=√(9*25*2:100)=(3•5√2)/10=1,5√2
СН²=СВ•CM=5*2,5=1250/100
CH=√(25•25•2/100)=(25√2)/10=2,5√2
АС=АН+СН=1,5√2+2,5√2=4√2
120²=156²+156²-2·156·156·cos A
cos A= (156²+156²-120²): (2·156·156)=34272: 48672=0,70414...
sin A= √1-cos²A=√1-0,49581314=√0,50418686=где-То 0, 7 ...
Далее найдем tg (A|2)=sinA/(1+сosA)
=0,7/1,7=7/17
и Из треукгольника АОС ОС=R= АС ·tg (A|2)=156·7|17=63,...