Объяснение:
№6
1) NP = 10 - диаметр => радиус r=10/2 = 5
Рассмотрим ∆ KOP = р/б: OK=OP = r = 5 =>
=> <a = <OKP = 60° Сумма всех углов треугольника = 180° => третий угол равен 180-(60+60) = 60° => ∆KOP - равносторонний, правильный треугольник, и
KP= 5
2) Т.к все эти 3 угла равны между собой, а по рисунку мы видим, что они расположены ровно в половине окружности, т.е их сумма равна 180° =>
3x=180°
x=60° каждый угол. Возвращаясь к 1-вой задачи, мы видим равносторонний правильный треугольник со сторонами 12/2 = 6 => KP= 6.
3) не будем что-то там копать, просто рассмотрим ∆AOC - прямоугольный
по Т.П.: AC=√(16-4)=√12
рассмотрим ∆ ACN - прямоугольный
По Т.П.: AN= √(12+4) = √16 = 4
4) Рассмотрим ∆OAC - прямоугольный
< OAC=30° => по катет напротив угла в 30° равен половине гипотенузы: CO= AO/2 = 6/2 = 3
NC= 6-3 = 3
№9
P= *сумма длин всех сторон*
BN=BK;NK=AP;KC=CP
P= 6+4 + 4+6 + 12 = 32
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение: