Первое немогу решить, так как давно это было,не могу вспомнить всех формул.
Решение задачи №2:
а) Найдем гипотенузу BD треугольника BCD:
BD=корень из (BC^2+CD^2)= корень из(5^2 + 5^2)= корень из 50
Назовем проекцию диагонали BD1, она является катетом прямоугольного треугольника BDD1. Найдем ее:
BD1=кореньиз(BD^2-DD1^2)=кореньиз((корень из 50)^2-1^2)=кореньиз49=7
ответ: проекция диагонали BD на плоскость равна 7 см.
б)я не знаю, но по моему они могут быть и не перпендикулярны.
если только не имеется в виду плоскость в которой лежит CDD1, тогда да, т.к. ВС перпендикулярен СDD1
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4