Биссектриса cm треугольника abc делит сторону ab на отрезки am=10 и mb=18 . касательная к описанной окружности треугольника abc , проходящая через точку c , пересекает прямую ab в точке d . найдите cd .
Треугольники ADC и CDB подобны по двум углам (<DCА=<CВА = половине градусной меры дуги АС согласно теоремам об углах вписанном - АВС и между касательной и хордой - DCA, а <D у них общий).
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Проведем диагонали параллелограмма. Рассмотрим треугольники ВДС и КЕС. ВС:КС=12:3=4:1 СД:СЕ=8:2=4:1 Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол. Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны, ⇒КЕ параллельна ВД. Проведем через А прямую, параллельную ВД. Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно. ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам. ⇒МС=ВС*2=24 см МК=МС-КС=24-3=21 см АР:РС=МК:КС АР:РС=21:3=7:1 ------------- [email protected]
Треугольники ADC и CDB подобны по двум углам (<DCА=<CВА = половине градусной меры дуги АС согласно теоремам об углах вписанном - АВС и между касательной и хордой - DCA, а <D у них общий).
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Тогда из этих соотношений:
DC=(9/5)*AD (1)
DC=(5/9)*BD (2).
АВ=28 (дано), AD = BD-AB = ВD-28.
Приравняем (1) и (2):
(9/5)*(ВD-28)=(5/9)*BD
BD(9/5-5/9)=28*9/5 =>
BD*56/45 = 28*81/45 =>
BD = 28*81/56 = 81/2 = 40,5 ед.
Тогда из (2): СD=(5/9)*BD = 22,5 ед.