Если каждое ребро параллелепипеда увеличить в два раза, получится подобная ему фигура с коэффициентом подобия 2. Отношение площадей подобных фигур равно квадрату коэффициента подобия. S2:S1=k²=4 Площадь увеличенного параллелепипеда S=4•4=16 ( ед. площади).
Подробно. Площадь поверхности прямоугольного параллелепипеда сумма площади боковой поверхности и площади двух оснований. S1=2ab+h•2(a+b) S2=2(2a•2b)+2h•2(2a+2b)=8ab+2h•4(a+b)=8ab+8h(a+b) Разделив S2 на S1, получим - площадь увеличенной фигуры в 4 раза больше.
Доказательство: пусть угол abc - вписанный угол окружности с центром o, опирающийся на дугу ac. докажем, что abc=1/2 дуги ac. есть 2 возможных варианта расположения луча bo относительно угла abc 1) луч ob совпадает с одной из сторон угла abc, например со стороной bc. в этом случае дугаac меньше полуокружности, поэтому угол aoc=дуге ac. так как угол aoc - внешний угол равнобедренного треугольника abo, ф углы 1 и 2 при основании равнобедренного треугольника равны, то угол aoc=уг.1+уг.2=2 уг.1отсюда следует, что 2 угол 1=дуг.ac или угол abc=уг1=1/2 дуги ac 2) луч bo делит угол abc на два угла. в этом случае луч bo пересекает дугу ac в некоторой точке d. точка d разделяет дугу ac на две дуги: дуга ad и дуга dc. по доказанному в номере один, угол abd=1/2 дуги ad и угdbc=1/2 дуги ad+1/2 дугиdc. складывая эти равенства попарно, получаем: угол abd+dbc=1/2 дуг ad+1/2 дугdc, или угол abc=1/2 дуги ac
Угол опирающийся на дугу в 90 градусов равен половине дуги, угол равен 45 градусов