М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DsBrend11
DsBrend11
23.05.2023 20:40 •  Геометрия

Найдите косинусов углов треугольника со сторонами 6см, 8см и 10см.

👇
Ответ:
Dan363
Dan363
23.05.2023
SK, SM, SN - высоты (апофемы) боковых граней. SO - высота пирамиды.Прям. тр-ки SOK, SOM, SON - равны, т.к. SO - общий катет и углы равны по условию.Значит т. О - центр вписанной окр-ти для тр-ка АВС.Тр-к АВС - прямоугольный, т.к. для него справедлива теорема Пифагора:10² = 8² + 6²Тогда его площадь:S(ABC) = 6*8/2 = 24 cm²С другой стороны:S(ABC) = p*r, где р - полупериметр, а r - радиус вписанной окр-ти.р = (10+8+6)/2 = 12 см.  r = 24/12 = 2 cm.Теперь, например, из тр-ка SOM находим апофему:SM = r/cos45 = r*√2 = 2√2 см.Теперь находим полную пов-ть пирамиды, сложив площади четырех тр-ов:Sполн = S(ABC) + S(SAB) + S(SAC) + S(SBC) = 24 + (10*2√2 + 8*2√2 + 6*2√2)/2 == 24(1+√2) cm²ответ: 24(1+√2) см².
4,5(72 оценок)
Открыть все ответы
Ответ:
Vip6longin
Vip6longin
23.05.2023

1 - 21 градусов

(180 градусов - 32 градуса) : 2= 74 градуса- углы А и С

74 градуса : 2= 37 градусов - угол А разделен биссектрисой АN

Рассмотрим прямоугольный треугольник AMC

90 градусов - 74 градуса= 16 градусов - угол MAC

угол NAC - угол MAC= 37 градусов - 16 градусов = 21 градус

2 - BR < AB < BT

угол Т= 30 градусов, поэтому катет, что находится напротив угла 30 градусов равен половине гипотенузы. В нашем случае BR=1/2 BT

Рассмотрим треугольник ABR. BR < AB так как гипотенуза всегда больше за катет.

Поэтому ответ BR < AB < BT

4,8(50 оценок)
Ответ:
aknurrakhmanber
aknurrakhmanber
23.05.2023

Пусть AC=x, тогда в ΔABC по формуле Герона:

\displaystyle 4S=\sqrt{(17+39+x)(17+39-x)(17-39+x)(39-17+x)}\\\\4\cdot 330=\sqrt{(56^2-x^2)(x^2-22^2)}\\\\x^4-(56^2+22^2)x^2+4^2\cdot 330^2+56^2\cdot 22^2=0

Решим квадратное уравнение относительно x².

\displaystyle x^2=\frac{+(56^2+22^2)\pm \sqrt{(56^2+22^2)^2-4\cdot 88^2\cdot (14^2+15^2)}}{2}

Далее немного вычислений, и зная, что x>0, как сторона треугольника, получим:

\begin{bmatrix}x=\sqrt{\dfrac{56^2+22^2+252}2}\\\\x=\sqrt{\dfrac{56^2+22^2-252}2}\end{matrix} \;\begin{bmatrix}x=44\qquad \\x=2\sqrt{421}\end{matrix}

Пусть KL=a, KN=b.

Рассмотрим случай, когда AC=44.

В ΔABC по теореме косинусов:

\displaystyle \cos A=\frac{44^2+17^2-39^2}{2\cdot 44\cdot 17} =\frac8{17}

\displaystyle \cos C=\frac{44^2+39^2-17^2}{2\cdot 44\cdot 39} =\frac{12}{13}

По формуле связи косинуса и тангенса:

\displaystyle tgA=\sqrt{\frac{17^2-8^2}{8^2}}=\frac{15}8

\displaystyle tgC=\sqrt{\frac{13^2-12^2}{12^2}} =\frac5{12}

В прямоугольных треугольниках AKL и CNM выразим AK и CN через a, основываясь на определении тангенса острого угла в прямоугольном треугольнике.

AK=8a/15; CN=12a/5

AC=AK+KN+NC=(44a/15)+b=44

P(KLMN)=2a+2b=59

Составим систему и определим S(KLMN)=ab

\displaystyle \left \{ {{\frac{44}{15}a+b=44\;|\cdot 2} \atop {2a+2b=59\qquad }} \right.-\\\\\frac{88-30}{15} a=88-59\Leftrightarrow a=7,\! 5

b=(59-15)/2=22

ab=7,5·22=165

Теперь всё тоже самое только AC=2√421.

В ΔABC по теореме косинусов:

\displaystyle \cos A=\frac{17^2+4\cdot 421-39^2}{2\cdot 2\sqrt{421}\cdot 17} =\frac{113}{17\sqrt{421}}

\displaystyle \cos C=\frac{4\cdot 421+39^2-17^2}{2\cdot 2\sqrt{421}\cdot 39} =\frac{243}{13\sqrt{421}}

По формуле связи косинуса и тангенса:

\displaystyle tgA=\sqrt{\frac{17^2\cdot 421-113^2}{113^2}}=\frac{330}{113}

\displaystyle tgC=\sqrt{\frac{13^2\cdot 421-243^2}{243^2}}=\frac{110}{243}

AK=113a/330; CN=243a/110

AC=AK+KN+NC=(421a/330)+b=2√421

P(KLMN)=2a+2b=59

\displaystyle \left \{ {{\frac{421}{330}a+b=2\sqrt{421}\; |\cdot 2} \atop {2a+2b=59}\qquad \qquad } \right. -\\\\\frac{842-660}{330}a=4\sqrt{421}-59\\\\a=\frac{165}{91}(4\sqrt{421}}-59)

Заметим, что проекция AB на AC равна AB·cosA=113/√421

Получается, что AK=\displaystyle \frac{113\cdot 165}{330\cdot 91}\cdot (4\sqrt{421}-59) > 113/√421.

Таким образом при АС=2√421 картинка другая, которая не удовлетворяет условию задачи.

ответ: 165.

4,6(86 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ