реуго́льник (в евклидовом пространстве) — это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки, образующие треугольник, называются вершинами треугольника, а отрезки — сторонами треугольника. Стороны треугольника образуют в вершинах треугольника три угла. Другими словами, треугольник — это многоугольник, у которого имеется ровно три угла. Если три точки лежат на одной прямой, то «треугольник» с вершинами в трёх данных точках называется вырожденным. Все остальные треугольники невырожденные.
Если известна только гипотенуза, можно найти лишь интервал в котором будет расположен размер высоты. В этом легко наглядно добиться, если нарисовать окружность и принять диаметр в ней за гипотенузу. Любой треугольник в этой окружности с имеющейся гипотенузой и катетами, проведёнными к любой точке окружности будет прямоугольным, так ка вписанный угол опирается на дугу в 180°. Очевидно, что высоты эти тр-ков будут разными, но наибольшая высота будет равна радиусу окружности, то есть половине гипотенузы. h=√((c/2)·(c/2))=√(c²/4)=c/2.
составляем пропорцию по отношению к сторонам этих треугольников: (AK=AC-KC) BC/KC = AD/AK
BC/KC = AD/(AC-KC)
6/KC = 10/(32-KC)
6*(32-KC) = 10*KC 1
92 – 6KC = 10KC
16KC = 192
KC = 12