М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Сашазаикина
Сашазаикина
28.08.2022 12:07 •  Геометрия

1. сторона основания правильной треугольной пирамиды равна 6, а высота 8, найти ctg между боковым ребром и плоскостью основания пирамиды. 2. апофема правильной четырехугольной пирамиды 7, радиус описанной около основания окружности 4. найти cos двугранного угла при основании пирамиды 3. высота цилиндра на 2см меньше его радуса. площадь боковой поверхонсти цилиндра 160псм2. 1) найти площадь осевого сечения цилиндра. 2) площадь сечения цилиндра проведенного паралельно на расстоянии 6см от ее оси 4)сечение конуса проходящее через вершину имеет площадь 16 см2 и пересекает основание по хорде. образующая конуса составляет с этой хордой угол 75градусов, а с высотой 30градусов а) найти площадь осевого сечения конуса б)площадь полной поверхности конуса

👇
Ответ:
ак147
ак147
28.08.2022
1. В основании правильной треугольной пирамиды - правильный треугольник, а высота проецируется в его центр.
SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый.
ОС - радиус окружности, описанной около правильного треугольника:
ОС = АВ√3/2 = 6√3/3 = 2√3.
ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4

2.  Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники.
Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD.
Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый.
Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8.
АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата
ОН = AD/2 = 2√2
ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7

3. Sбок  = 2πRH = 160π см² ⇒ 2RH = 160 см²
ABCD - осевое сечение.
Sabcd = 2R·H = 160 см²
ABEF - сечение, параллельное оси и отстоящее от нее на 6 см.
Так как H = R - 2,то
2R(R - 2) = 160
R² - 2R - 80 = 0
D = 4 + 320 = 324
R = (2 + 18)/2 = 10  см      R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи
H = 10 - 2 = 8 см
Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения.
ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора
             НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см
ВЕ = 2НВ = 16 см
Sabef = BE · H = 16 · 8 = 128 см²

4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l  образующие)
∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°.
Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см²
l² · sin30° = 32
l² = 64
l = 8 cм
ΔАОВ: ∠ВАО = 30° по условию.
             cos∠BAO = AO/AB
             cos30° = h/l ⇒  h = l · cos30° = 8√3/2 = 4√3 см
             r = OB = AB · sin30° = 8 · 1/2 = 4 см
Площадь осевого сечения:
Sakc = 1/2 · KC · AO = r · h = 16√3 см²
Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
4,6(19 оценок)
Открыть все ответы
Ответ:

Грань АА1С1С - квадрат. 

АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.

По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒

Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы. 

∆ АВС прямоугольный, R=АС/2=10. 

АН=СН=ВН=10. 

Высота призмы совпадает с высотой В1Н пирамиды.

По т.Пифагора 

В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3

Формула объёма призмы

 V=S•h где S - площадь основания, h - высота призмы. 

S-12•16:2=96 (ед. площади)

V=96•10√3=960√3 ед. объёма.


Основание наклонной треугольной призмы авса1в1с1 -- прямоугольный треугольник ывс, у которого ав=12,
4,8(12 оценок)
Ответ:
Катя132211111
Катя132211111
28.08.2022
Проведем МА⊥α и МВ⊥β.
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.

Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.

МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) =  √(256 + 144) = √400 = 20
4,5(12 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ