Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение)) Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.
Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение)) Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.
АВ(7;0) АС(- 2;2) ВС(- 5;-1)
Теперь находим их длины АВ=7, АС=√8, ВС=√26
Скалярное произведение АВ*АС=- 14+0= - 14 ⇒ cosA= - 14/(7*√8)= - √2/2 ⇒α=135
sinα= √2/2
S= 0,5*AB*AC*sinα =7