Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
где х -- сторона, к которой проведена высота...
и площадь и высота даны...
из формулы можно найти сторону, к которой проведена эта высота...
96 = х*9.6 / 2
х = 96*2 / 9.6
х = 20
в условии задачи не сказано к какой стороне проведена высота...
этой стороной может быть и катет и гипотенуза...
ведь катеты по отношению друг к другу являются тоже высотами...
если один из катетов а = 9.6, то второй катет тогда равен b = 20
и тогда сумма катетов = 29.6
если найденная сторона х = 20 -- гипотенуза, то
только для прямоугольного треугольника известна еще формула для площади:
S = a*b / 2, где a и b --- катеты...
значит, произведение катетов a*b = 96*2
и для прямоугольного треугольника верна т.Пифагора...
a^2 + b^2 = c^2 = 20^2
выделим полный квадрат...
a^2 + b^2 + 2ab - 2ab = 400
(a + b)^2 = 2*96*2 + 400
(a + b)^2 = 28^2
a + b = 28
получается, что при таком условии -- два решения...