Боковые ребра правильной четырехугольной пирамиды наклонены к плоскости основания под углом 60 , площадь основания равна 8. определить 1)высоту пирамиды, 2) тангенс двугранного угла при основании этой пирамиды
Обозначим сторону основания за а. Величина её равна a = √S = √8 = 2√2. В вертикальной плоскости, проходящей через боковое ребро и ось пирамиды, рассматриваем прямоугольный треугольник, где гипотенуза - боковое ребро, а катеты - высота пирамиды и половина диагонали основания. Половина диагонали основания равна а√2 / 2 = 2√2*√2 / 2 = 2. 1) высота пирамиды Н =2*tg 60° = 2√3. 2) тангенс двугранного угла при основании этой пирамиды равен отношению высоты пирамиды к перпендикуляру из центра основания на сторону (для квадрата это а / 2 = (2√2) / 2 = √2. Отсюда tg α = (2√3) / √2 = 2√1,5 = 2,44949.
Радиус окружности описанной вокруг правильного шестиугольника равен его стороне. Площадь сектора соответствующая его центральному углу равна 60/360=1/6 части площади круга. S=πr²; Sсек.=π*12²/6=24π см². Площадь большей части круга (см. рисунок) - площадь круга за вычетом площади сегмента ограниченного стороной шестиугольника и стягивающей его дугой. Площадь этого сегмента равна площади сектора с углом 60° за вычетом площади равностороннего треугольника со стороной 12 см. Sтр.=а²sin60°/2=144√3/4=36√3 см². Sм.с.=Sсек.- Sтр.=24π-36√3 см². Площадь большей части круга - 144π-(24π-36√3)=120π+36√3 см². В полных единицах ≈ 439,2 см².
Правильный шестиугольник состоит из шести правильных треугольников со стороной, равной стороне шестиугольника. Обозначим её R. Угол меньшего сектора равен 60°, а площадь - одна шестая площади круга 60/360=1/6, Sсект=Sкр/6, Sкр=πR²=144π, Sсект=24π≈75.4 см² Площадь большей части круга (большого сегмента), отделённой стороной шестиугольника равна площади круга минус площадь малого сегмента, лежащего по другую его сторону. Sбс=Sкр-Sмс. Площадь малого сегмента равна площади известного сектора за вычетом площади правильного треугольника. Sмс=Sсект-Sтр Площ. прав. тр-ка Sтр=(R²√3)/4=(144√3)/4=36√3 Sмс=24π-36√3 Sбс=144π-24π+36√3=120π+36√3≈439.34 см²
Величина её равна a = √S = √8 = 2√2.
В вертикальной плоскости, проходящей через боковое ребро и ось пирамиды, рассматриваем прямоугольный треугольник, где гипотенуза - боковое ребро, а катеты - высота пирамиды и половина диагонали основания.
Половина диагонали основания равна а√2 / 2 = 2√2*√2 / 2 = 2.
1) высота пирамиды Н =2*tg 60° = 2√3.
2) тангенс двугранного угла при основании этой пирамиды равен отношению высоты пирамиды к перпендикуляру из центра основания на сторону (для квадрата это а / 2 = (2√2) / 2 = √2.
Отсюда tg α = (2√3) / √2 = 2√1,5 = 2,44949.