М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Умник00Семь
Умник00Семь
03.05.2023 11:01 •  Геометрия

Впрямоугольном треугольнике dce с прямым углом с проведена биссектриса ef,причем fc=13см.найдите расстояние от точки f до прямой de

👇
Ответ:
Love1963sss
Love1963sss
03.05.2023
расстояние тоже будет 13, тк EF биссектриса и она отсечет равные отрезки)
4,4(34 оценок)
Открыть все ответы
Ответ:
Амиiskdhdm
Амиiskdhdm
03.05.2023
1. l_{n} = \frac{\pi R}{180} *n, где n - градусная мера соответственного центрального угла.
Найдем радиус окружности:
S= \pi R^{2} =36 \pi ; \\ 
R= \sqrt{ \frac{S}{ \pi } } = \sqrt{ \frac{36 \pi }{ \pi } }=6, где S - площадь круга.
Найдем длину дуги:
l_{20}= \frac{6 \pi }{180} *20= \frac{2}{3} \pi
ответ: \frac{2}{3} \pi см.
2. Найдем сторону квадрата a:
S= a^{2} = 48; \\ 
a= \sqrt{48} =4 \sqrt{3}.
Радиус вписанной в квадрат окружности равен:
R= \frac{a}{2}, где a - сторона квадрата.
R= \frac{4 \sqrt{3} }{2} =2 \sqrt{3}
Площадь вписанного треугольника равна:
S= \frac{ c^{2} \sqrt{3} }{4}, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
R= \frac{c}{ \sqrt{3} } ; \\ 
c=R* \sqrt{3} =2 \sqrt{3} * \sqrt{3} =6.
Найдем площадь правильного треугольника:
S= \frac{ c^{2} \sqrt{3} }{4} = \frac{36 \sqrt{3} }{4} =9 \sqrt{3}.
ответ: 9 \sqrt{3} см.
4,4(56 оценок)
Ответ:
adilyabaxtigar
adilyabaxtigar
03.05.2023

80 см^2

Объяснение:

Рассмотрим треугольник , лежащий в основании.АВ=ВС=10 и АС=12

BD -биссектриса угла В.  Так как треугольник равнобедренный, то

BD^2= AB^2 - (AC/2)^2 = 100-36=64

BD=8

О-точка пересечения биссетрис .  Тогда по свойству биссектрисы:

ВО:ОD= AB:AD=10:6 =5:3

Значит ВО=5 см  OD=3 см

Пусть вершина пирамиды S

Тогда SB^2= BO^2+OS^2= 25+16=41

SB=sqr(41)

Теперь найдем АО^2=ОС^2= AD^2+OD^2= 36+9=45

SA^2=SC^2= AO^2+OS^2= 45+16=61

SA=sqr(61)

Найдем площадь треугольника ACS  :

Высота этого треугольника SD= sqr (SA^2-AD^2)=sqr(61-36)=5

Sasc=AC*SD/2=12*5/2=30

Найдем площадь треугольника ACB  :  AF и  BF- отрезки , на которые высота делит сторону АВ. AF=6 , BF=4

 Высота этого треугольника = sqr (SA^2-AF^2)=sqr(61-36)=5

Sasb=AB*SF/2=10*5/2=25

Заметим, что треугольники ASB = CSB=25

Тогда полная площадь боковой поверхности:

25+25+30=80

4,7(45 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ