2.Высота делит этот треугольник на два, один из которых равнобедренный прямоугольный. (Угол 45 градусов по условию, второй после построения высоты)
Катеты в нем равны.
Обозначим каждый х,
-один из катетов часть основания, второй катет - высота.
Квадрат гипотенузы равен сумме квадратов двух катетов:
2х²=49*2
х²=49
х=7 см
Высота равна 7, основание треугольника 10.
S=1/2h*a
S=7*10:2=35 cм
3.В трапеции АВСД АВ=СД=10 см, АС=17 см, АД-ВС=12 см.
Проведём СН⊥АД.
В равнобедренной трапеции ДН=(АД-ВС)2=12/2=6 см.
Тр-ник CДН - египетский т.к. отношение гипотенузы и катета равны 5:3 (СД/ДН=10/6=5/3), значит СН=4·2=8 см.
В прямоугольном тр-ке АСН АН²=АС²-СН²=17²-8²=225,
АН=15 см,
АД=АН+ДН=15+6=21 см.
АД-ВС=12 ⇒ ВС=АД-12=21-12=9 см.
S=CН·(АД+ВС)/2=8(21+9)/2=120 см² - это ответ.
BDA = 90°
ABC= 60°
Объяснение:
ВСК= 150°, значит ВСD= 30, так как образуется смежный угол если их сложить то получится 180°.
Значит исходя из полученного ответа DAB=30° обьясняется это тем что треугольник равнобедренный.
Если BD медиана, значит она делит противостоящую сторону пополам. Из этого исходит, что, медиана в нашем случае делит треугольник пополам образуя угол в 90°=BDA.
Осталось найти угол.
Так как треугольник имеет сумму всех углов равную 180° мы сложим угол BDA и DAB, получим угол ABD
90°+30°=120°
180°-120°=60° угол ABC
30²+(8х)²=(17х)²
900+64х²=289х²
225х²=900
х²=4
х1=-2 не подходит, т.к. сторона не может выражаться отрицательным числом
х2=2
Таким образом,
катет = 8*2=16
гипотенуза = 17*2=34